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Abstract. A new bosonisation procedure based on an exact method of functional integration 
is applied to the one-dimensional Tomonaga-Luttinger model with forward scattering. 
This method circumvents the conventional procedure where the fermion field operator is 
represented by (bosonic) charge and spin density fields. Fictitious auxiliary fields are 
introduced to deal with the interaction term so that the fermionic degrees of freedom can 
be integrated out exactly. In addition to the usual description of the system in terms of 
charge and spin fluctuations, an effective action in terms of the auxiliary fields can be used. 
The evaluation of the Green function is facilitated if the latter route is taken. Our results 
for the spinless and spin-4 cases agree with previous work. 

1. Introduction 

In 1950, Tomonaga proposed a model of an assembly of spinless and massless Dirac 
fermions in 1 + 1 dimensions. Translated into the language of the non-relativistic 
degenerate electron gas, this model involves a free-electron dispersion relation 
linearised about the Fermi level: ~ ( p )  = vf /pI  (where vf and pf are the Fermi velocity 
and momentum). This allows the Hamiltonian to be diagonalised exactly in terms of 
the density operators of the fermion field. The original problem is thus transformed 
into an equivalent theory of non-interacting bosons. This method involves the replace- 
ment of the exact commutators of the density fields by their ground-state expectation 
values. Luttinger (1963) sought to avoid this by separating left- and right-moving 
fermions into two branches such that ~ ( p )  = *vfp (for all real p ) .  However, due to 
the subtleties of unitarily inequivalent Hilbert spaces, the correct treatment of this 
model was only given by Mattis and Lieb (1965) who revised the commutators of the 
density operators. They calculated the momentum distribution near the Fermi points 
and found that the Migdal discontinuity was smoothed out, contrary to the basic 
hypothesis of the Landau theory of Fermi liquids. It should be noted that this result 
cannot be obtained from finite-order perturbation theory, illustrating the importance 
of the concept of bosonisation. Its applicability was extended to the calculation of 
correlation functions when Mattis (1974) and Luther and Peschel (1974) presented a 
boson representation for the fermion field operator in terms of the density operators. 
This had been derived previously by Jordan (1935, 1936a, b, 1937) in the context of a 
neutrino theory of light. The model was generalised to the spin-f case by Luther and 
Emery (1975) who included back scattering, by Emery et a1 (1976) who included 
umklapp processes and by Grinstein et a1 (1979) who also considered forward scattering 
with spin flip. Remarkably, it was found that such models were still exactly solvable 

0305-4470/88/224155 + 17$02.50 @ 1988 IOP Publishing Ltd 4155 



41 56 D K K Lee and Y Chen 

for given sets of coupling constants. A precise mathematical formulation of this 
bosonisation procedure was given by Heidenreich et al (1980). The comparison with 
conventional perturbation theory was first made possible by the work of Dzyaloshinsky 
and Larkin (1973) who were able to identify the cancellation of non-Tomonaga 
diagrams to all orders. Details of the large volume of work in this field can be found 
in a review by S6lyom (1979). 

The boson representation was further developed when Haldane (1979) pointed out 
that the zero-mode terms associated with the particle-number operators should be 
included. This allows charge and current excitations. Moreover, Haldane (1981) 
extended the theory to treat the deviation of the fermion spectrum from linearity as 
corrections to the linearised spinless theory. In the boson representation, this ‘Luttinger 
liquid theory’ gives rise to a non-linear coupling among the original elementary 
excitations. It was shown that much of the low-energy structure of the linearised model 
was preserved. It was also suggested that a large class of one-dimensional quantum 
fluids could be described in this way. An example is the Heisenberg-Ising spin chain 
for which, as shown independently by Fowler (1980), even the linearised model gives 
a good estimate of the spin-wave phase velocity. 

The concept of bosonisation is also well known in relativistic field theory. In 
particular, it was introduced by Klaiber (1968) for the study of the massless Thirring 
model which is analogous to the Tomonaga-Luttinger model considered here. Coleman 
(1975) was able to establish the equivalence between the massive Thirring and sine- 
Gordon models by direct comparison of their respective perturbation series. The 
fermions were mapped onto the soliton sector of the sine-Gordon model (Mandelstam 
1975). The operator fit of Lowenstein and Swieca (1971) is the central tool for the 
bosonisation of these Abelian theories. Non-Abelian bosonisation in the operator 
formalism was initiated by the work of Polyakov and Wiegmann (1983) and Witten 
(1984). For instance, the chiral-invariant Gross-Neveu model (Gross and Neveu 1974) 
was extensively studied. A discussion of the developments in this field is beyond the 
scope of this paper. 

Bosonisation in the operator formalism, albeit powerful and efficient, may be quite 
baffling to the uninitiated. It is known that field-theoretical quantities such as the 
Green and vertex functions can be expressed directly as functional averages, i.e. by 
integration over infinite-dimensional function spaces. In condensed matter physics, 
most of the problems treated in this manner involve approximate calculations of these 
integrals by the method of steepest descent or the use of background fields. An 
introduction can be found in the excellent treatise by Popov (1987). The object of this 
paper is simply to forego the operator methods and derive the bosonisation of the 
Tomonaga-Luttinger model by an exact method of functional integration. We will 
not consider any large-momentum scattering processes. 

Although this approach has only been touched upon in the literature of the 
one-dimensional electron gas (Fogedby 1976), it has been employed extensively in 
relativistic field theory. The original motivation for such work was to provide a 
procedure for non-Abelian bosonisation (Roskies and Schaposnik 1981, Gamboa Saravi 
et a1 1981, 1984, Furuya et a1 1982). In this context, the chiral non-invariance (Fujikawa 
1979, 1980) of the integration measure of the Dirac fields is central to the bosonisation. 
Na6n (1985) and Eides (1985) provide a recent introduction to this area. We present 
a parallel approach for the Tomonaga-Luttinger model and arrive at the equivalent 
boson theory without the explicit use of the chiral transformation or the non-trivial 
Fujikawa procedure needed to evaluate the relevant Jacobian. 
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This paper is organised as follows. In § 2, the spinless Tomonaga-Luttinger model 
is defined. Auxiliary fields have to be introduced to express the interaction in terms 
of the charge density fields. A quadratic action in terms of the charge density field is 
found by integrating out all other degrees of freedom and the partition function in the 
canonical ensemble is calculated exactly. It will be seen that this is possible because 
the interaction of the fermions with the auxiliary fields can be absorbed by a simple 
gauge transformation. From the free energy, we can then determine the central charge 
of the problem as being unity, using a result in conformal field theory (Blote et al 
1986, Affleck 1986). The system can also be described by an effective action in terms 
of the auxiliary fields. The single-particle Green function, the momentum distribution 
and the single-particle density of states are then calculated using, for simplicity, the 
cutoff procedure of Luther and Peschel (1974). Our results agree with Luther and 
Peschel(1974), Mattis and Lieb (1965) and Suzumura (1980). The spin-: generalisation 
can be found in D 3, where the partition function is expressed in terms of uncoupled 
spin density and charge density fluctuations. The Green function, first determined by 
Dzyaloshinsky and Larkin (1973) by diagrammatic techniques, is reproduced here in 
the functional framework. Section 4 concludes with a discussion of projects for the 
future. 

2. The spinless Tomonaga-Luttinger model 

2.1. The model 

In the Tomonaga-Luttinger model, there are two branches of spinless and massless 
fermions on a line of length L. The fermions in branch 1, described by the field $,(x), 
move in the positive x direction with velocity U,-, while branch-2 fermions $2(x) move 
in the opposite direction with velocity -Uf .  In other words, we have linearised the 
dispersion relation for the case of free fermions. We allow each branch to have both 
positive and negative momenta so that we have a sea of negative-energy states which 
should be filled. A cutoff procedure is needed to prevent these states from contributing 
to the results of the calculations in this model (see § 2.3). The Hamiltonian is H = 
No + H, where 

where p = -idx, $ = ($;), i = (i, , i2) and a, b = 1,2. We have shifted the origin of the 
energy scale to vfpf to ensure that all states below the Fermi level are occupied in the 
non-interacting ground state. For a realistic H I ,  we choose Vab to be the matrix 

This interaction HI represents the forward scattering of the fermions. We have neglected 
the back scattering and umklapp processes where the momentum changes are large 
enough ( - 2 ~ ~  and -4pf respectively) to transfer fermions from one branch to the 
other. In the conventional Tomonaga-Luttinger model, the interaction is chosen to 
be local, i.e. -6(x-y) .  However, in the next section, we will leave it in a non-local 
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form for the sake of generality. Our Hamiltonian reduces to that of Luttinger when 
U, = 0 and that of Mattis and Lieb when U ,  = v 2 .  

2.2. The partition function 

In the imaginary-time formalism, the action for the Hamiltonian of (1) is 

where H ( T )  is the Hamiltonian in the Heisenberg picture: 

H(7.)= Uf dx  $(x, 7)(U3P -Pf)$(x, 7)  I: 
+JoLdx JoLdy $a(x, T)$a(x, 7)vab(x-y)$b(y, 7 ) $ b ( Y ,  

and Ga, $, are independent Grassmann fields. The regularised partition function is 
given by the formal ratio: 

where d[ $3 d[ $3 denotes the appropriate integration measure for the anticommuting 
fermion fields and So is the action which corresponds to the non-interacting case where 
v a b  = 0. In calculating the partition function, we integrate over all configurations of 
the Grassmann fields satisfying antiperiodic boundary conditions in the imaginary time 
T (i.e. $(x, 0) = -$(x, p )  and $(x, 0) = -$(x, p )  for O <  x < L )  and periodic boundary 
conditions in x. However, the integration of exp(-S) cannot be performed directly 
because of the four-fermion term. This difficulty can be avoided by observing that this 
term can also be written as H ,  = j dx j dy &,pbVabpb where pa = are the density 
fields of the fermions in the two branches. Thus 

The delta functional above behaves like an ordinary delta function and can be 
represented by a functional integral: S[X] = N j d[4]  exp(i 5 4X) where 4 is a real 
commuting field and N is an irrelevant normalisation constant. Using this identity, 
we can write (3) as 

where 
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Now, we integrate out 4 and + to obtain the partition function in terms of p a  and 
the auxiliary fields 4a.  The integral over the fermion fields which appears in both the 
numerator and the denominator of the expression in ( 5 )  can be rewritten as a product 
of two Matthews-Salam determinants (Matthews and Salam 1955): 

xexp(  - JJ  42(~2+i42)+2)  

= det[D,+i+,]  det[D2+i4,]. (6) 

Using det A = exp(Tr In A) and ln(A + B )  = In A + B 

det( D, + i4,) = det D 

dA (A + AB)-’, we write 

( 7 )  

where G,(.x, T ;  x‘, T’,  [ $,I) is the Green function of D, + i4, satisfying 

[D,+i4,(x,~)]G,(x,  T;x’,  T ’ , [ ~ , ] ) = - ~ ( x - x ‘ ) ~ ( T - T ’ ) .  (8) 

Equation (8) is a first-order linear differential equation for G,[$,]. Therefore, by 
introducing a local U ( l )  gauge transformation to the fermion fields, we can reduce 
G,[4] to the non-interacting Green function GO,. In other words, Ga[4] and GO, differ 
from each other only by a phase change and we have the factorisation ansatz (Schwinger 
1962) 

Ga(x, 7; x’, T‘,  [4aI)=GO,(x-x’, 7-7‘ )  exp(fa(x, 7, [4aI)-fa(x’, 7 ’ 7  [+a ] ) )  (9) 

where D,G:(x, T )  = -S(X)S(T). By observing that DID2 is the two-dimensional 
Laplacian whose corresponding Green function is (-1/2.n) ln(x2+ T’)’’~, we can easily 
see that 

G:(x, T )  =(1/2.n) exp(*iip,x)/(*ix-T). (10) 

Here and henceforth, the upper (lower) sign corresponds to a = 1 ( a  = 2). From (8) 
and (9), we find 

(Da+Pf)fa(x,T, [ 4 a I ) = - i 4 u ( x , ~ ) -  (11) 

Note that $ has to be a boson field, periodic in x and T,  so that the Matsubara 
Green functions satisfy the appropriate fermionic boundary conditions. In the 
Fourier representation, (1 1) gives 

fu(x, 7, [ + ~ I ) = ( ~ / P L )  C f a ( p ,  a, [ 4 a I )  exp[i(ipx-w~)I 
PW 

where 
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In the imaginary-time formalism, w denotes w, = 2 m / p  where p = 1/ Tand n is an 
integer. From now on, we shall consider only the infinite-size and zero-temperature 
limit where (pL)- '  Epw + lym dpl(27r) sTm dw/(277) and we shall use the sum and the 
integral interchangeably. 

It is important to realise that a quadratic dispersion relation for the fermions would 
give rise to a second-order differential equation for Ga[4]  and the ansatz would then 
fail to give a closed equation forfa as in (12). 

Equation (10) shows that G!(x,O)-*1/2~ix at short distances. Since GO, and 
Ga[4] differ only by a phase change, this divergence also appears in Ga[4] and has 
to be regularised for ( 7 )  to be well defined. Among the existing procedures, we find 
that the point-splitting method (Schwinger 1962) is best suited to our purpose. This 
defines the coincident limit of G,[ 41 to be symmetrical in space with T' set equal to T :  

Ga(x, T ;  x', r ' ,  [41) /x~-x , . r~-T 
:=&( lim + l i m ) G a ( x , T ; x + 7 ) , ~ , [ ~ ] )  

7 - O t  v-0- 

-* (1 /47~ i77) [ (1+77r ldxfa ) - ( l -77a , fa ) l  (as 77+0) 

where 

w [ h P ,  v l = ( l / p L )  PW 2 a ( C A a 1 4 , 1 2 + ~ P a v a b p , - i Z p a 4 a )  ab 

is the effective action for the system in terms of and pa with 
A, := - (1/4~r)p/( iw - p )  A2:=AT=(l /4 . r r )p/( iw+p) 

(16) 
A := A1 +A, = 8 ~ A i A 2  = ( 1 / 2 ~ ) p * / ( p * +  U'). 

The effective action W [  4, p, VI is a quadratic functional, thus enabling us to perform 
the functional integration exactly. We integrate out first so that we are left with 
an effective action in pa:  

where 
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a, = O ( U ,  = v2 = 0) and U,( p )  is the Fourier transform of u , ( x ) .  Therefore, we have 
arrived at a system of non-interacting bosons pa which are the elementary excitations 
(plasmons) of the original system of interacting fermions. 

From (17), we can read off the density response function (in the imaginary-time 
formulation) as 

Nuh(p, w )  =t[a-’(p, w ) l a b  

where Nab(p ,  w )  is the Fourier transform of (T,p, (x,  T ) p b ( o ,  0)). Performing the 
analytic continuation to real frequencies, we obtain the plasmon spectrum from the 
condition det a( p ,  -iE) = 0: 

4 P ) 2 = P 2 [ ( l  + vl(p)/57)2-(U2(P)/57)21. (18) 

Therefore, the total response function in the imaginary-time formulation can be 
written as 

N(P,  w )  = c %(P, w )  = - ( P 2 / d [ l  + ( V I  - v*)/571/(4P)*+w2).  (19) 
U h  

Now, we proceed to evaluate the partition function by integrating out the density 
fields p a .  We obtain 

z/zo = IT [1+ B ( p ) / ( p 2 +  w2)]-”2 
PW 

= e x p (  - t C  P” In{l+B(p)/[pZ+(2n57lP)’II) 

where B ( p 1 := p2{2 v l  ( P I /  57 + [ ( v1 ( P I /  57 1’ - ( U,( P I /  57 1211. But 

c W + B ( P ) / ( P 2 + ~ Z , ) 1  
n 

provided that B ( p ) / p 2 +  1 > 0 for stability. Otherwise the free energy does not exist. 
The free energy is 

F(  T )  = Fo( T )  + C ( & ( P I  - P I  + C 2 T In[ 1 - exp(-E(p)/ ~ ) 1 / [ 1 -  exp(-p/ T ) I  (20) 
P’O P > O  

where we have chosen the units such that u f ,  A and the Boltzmann constant are 
unity. The first term in (20) is the free energy of the non-interacting case while 
the second is the (infinite) vacuum renormalisation energy. The latter does not 
contribute to the thermodynamics and, dropping it, we may write F ( T ) =  
2 T Zlp>o In[ 1 - exp( - E (  p ) /  T ) ] ,  as is appropriate for a system whose doubly degenerate 
elementary excitations are bosonic with the eigenvalue spectrum E (  p ) .  By setting u l  = 0 
and v2 = U, we have the Luttinger spectrum sL( p )  = 1 - (U/ T ) ~ ] - ” ~  and, by setting 
U, = v2 = U, the Mattis-Lieb solution ~ ~ ~ ( p )  = I p l ( l + 2 v / ~ ) - ” ~ .  In the case of a long- 
range Coulomb interaction, e.g. U, = v2 = A / p 2 ,  the plasmons acquire a dynamical mass: 
E ( p ) = ( p + m 2 ) ” *  with m2=2h/57 (Mattis and Lieb 1965). As T - 0 ,  F ( T ) +  
- ( T m / r ) K , ( m / T ) -  - ( m / 2 ~ ) ’ / ~ T ’ / ~  exp(-m/T),  which is different from the 
behaviour of a Fermi liquid. This reminds us of the similar situation in ( Q E D ) ~  where 



4162 D K K Lee and Y Chen 

the photon is found to acquire a mass through the dynamics (Schwinger 1962). We 
may also consider a local interaction: uI(x) = u16(x) and uz(x) = u,S(x). We find that 

dp l (27 )  In[ 1 - exp(-puT/ T ) ]  

where uf* = uf[( 1 + U,/ 7~)’ - ( u2/  z - ) ~ ] ~ ’ ~  is interpreted as the renormalised Fermi velocity. 

F (  T )  = 2T I 
2.3. The single-particle Green function at T = 0 

We first calculate the Matsubara Green function for the branch-1 electrons: 

Gl(X, 7; x’, 7’) = -(T,[$1(x, 7)1Crl(X’, + ) I )=  -($1(x, 7)&(x‘, 7‘)) 

i%(x, t ;  x’, t ’ )  =(T,[$,(x, t)dl(X‘, 01) .  

where the second equality is defined in the functional integral form. A Wick rotation 
then gives the zero-temperature Green function: 

In the previous subsection, we have already obtained the electron Green function 
G,(x, T ;  x’, T’[ + I ] )  for a given configuration of the auxiliary field Therefore, in 
order to obtain the full Green function Gl(x, 7; x’, T’), we need an effective action 

in terms of +a only. In order to obtain this explicitly, we integrate out first the 
density field pa from the functional-average definition of Gl(x,  7; x’, 7’) above. We 
then arrive at 

GI(& 7; x’, 7’) = I a31 4 $ 1  a 4 1  &(x, t)$I(X’, t’)  exP(-r[4, $1) 

where 

We now integrate over the fermion fields, getting the Matthews-Salam determinant of 
the operator D1 +i4, in the numerator of (21). This has already been calculated. So 

GI(x,  7; x’, 7‘) = n d[4,1 GI(x, 7; x’, 7‘[+11) e x ~ ( - A )  (I n: d[4al w 4 - A ) )  
-1 1. 
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so that 

G,(x, r ;  x‘, 7’) = GY(x, T ;  x’, 7’) exp[-Q(x -XI, 7 -  T’)] 

where Q(x, T )  is given by 

- ( 2 7 r / p ~ )  C p - l  e-+[1 -cos(px -wr) l [ (p+iw) / (p2+w2)  -(fp+iw)/(g’p2+w’)I 
PW 

(23) 

withf( p )  = 1 + U!( p ) /  7r and g(  p) ’  = (1 + u I (  p ) /  7 ~ ) ~  - ( u2( p ) /  7 ~ ) ’ .  The convergence fac- 
tor in momentum integration is introduced as an ad hoc ultraviolet cutoff 
procedure (see below). We shall henceforth consider only local interactions so that f 
and g are independent of p .  

The expression for Q involves elementary but tedious integrations. It can be found 
in appendix 1 where the analytic continuation to real time Q(x, T ) +  Q(x, t )  has also 
been performed. Using 

%y(x, t )  = (27r - I  exp(ipfx)[(x- t+icr)-’+cc] (24) 

we get the final expression for %,(x, t ) :  

g,(x, t )  = (27r ) - ’  exp(ip,x){@( t ) (x  - g t  +ia)-’[(x -gt +icu)(x+gt - ~ ( Y ) / ( Y ~ ] - ~  

+ @( - t )[cc]}  ( 2 5 )  

where y = [ ( f / g )  - 1]/2. 
We note that the exponent y depends on the strength of the interaction. This is a 

general feature of theories with a conformal charge of unity. The conformal charge, 
c, can be inferred from the low-temperature expression for the free energy: F ( T ) -  
-(7r/6)cT2/v; (Blote et a1 1986, Affleck 1986). 

The retarded Green function G, of Luther and Peschel can be determined from 
the relation: gR1(x, t )  = i@(t)[ %!(x, t )  - %!(x, - t ) ] .  Due to the fact that we have chosen 
the same cutoff for the free-electron Green function and the space-time-dependent 
decay phase factor Q, we are also able to obtain both the momentum distribution and 
the single-particle density of states in a closed form. 

We have taken the simplest cutoff procedure with only one cutoff parameter. 
However, in principle, there should be two distinct cutoff parameters in the fermion 
model, a-’ and r - ’ ,  for the bandwidth and the momentum transfer respectively. Due 
to the artificial Fermi sea of negative-energy states, the former is necessary for the 
regularisation of the non-interacting model. In this interpretation, the convergence 
factor above amounts to altering the density of states in momentum space. On the 
other hand, r is associated with the range of the pair potential V(x - y ) .  By neglecting 
this distinction, we follow the original procedure of Luther and Peschel (1974). Our 
expression for the Green function will turn out to be the same as their expression. It 
can be shown that this procedure is consistent with diagrammatic summation in the 
fermion model when only forward scattering is considered (see, for example, S6lyom 
1979). However, for models with large momentum transfer, this treatment is inadequate, 
producing unphysical results in the limit (Y + 0. The inclusion of two cutoff parameters 
in the fermion model was studied by Chui et a1 (1974), Grest et a1 (1976) and S6lyom 
(1975). Theumann (1977) pointed out that even this procedure was inconsistent. For 
example, the zero limits of a and r have to be taken in different orders when considering 
different quantities (see also Fowler 1980). More recently, a has been given a more 



4164 D K K Lee and Y Chen 

natural interpretation in terms of the Jordan point-splitting regularisation where the 
product &a(x, T ) ~ ~ ( X ,  T )  is defined as qU(x*ia /2 ,  ~ ) + , ( x T i a / 2 ,  T )  in the limit a+O. 
This was implicit in the work of Haldane (1979, 1981) and was discussed in detail 
later by Apostol (1983) and Apostol et al (1987). This is believed to resolve the 
inconsistencies found in the previous calculations. 

2.4. The momentum distribution at T = 0 

The momentum distribution of branch-1 fermions is defined, in the limit of infinite 
size, as 

X 

n,( p )  = -i dx  exp( -ipx) lim G,(x, T )  
7-0- 

a3 

L 
dx e~p[ iax(p~-p)] (x- i ) - ' - ' (x+i ) -~ .  (26) I, = (27ri)-' 

The integral is evaluated in appendix 2. We obtain 

n , ( p )  = l(P - P r ) 4 2 y  exp[-l(p -Pr)aIl[@((P - P f ) a ) W y +  1,2Y+ 1; 2(P - P f ) a ) l r ( Y )  

+ @ ( ( P r - P ) a ) W Y ,  2Y+ 1; 2(Pr-P)a) /UY+ 111 ( 2 7 )  

where P(a ,  P ;  z )  is a degenerate hypergeometric function and is related 
to lFI(Q, P ;  z) by 

*(a, P ;  z) = ,F,(a,  P ;  Z F ( 1  - P ) l U a  - P +  1) 
+ ,F& - p + i , 2  - p ;  z ) z ' - P r ( p  - i ) / r (  .). 

For small z, l F l ( a , P ;  z ) =  l + ( a / ~ ) z + [ a ( a + 1 ) / ~ ( ~ + l ) ] z 2 / 2 + O ( z 3 ) .  This power 
series allows us to expand about p = pf to get 

n , ( p , )  = r ( Y + t ) / 2 J ; ; w + I )  

and 

n l ( P )  - n,(pr) - - tsgn(p - P X P  - P f ) ~ I z y l c 0 ~ ( ~ Y )  for 2 y <  1 

- K P - P f h  for 2 y >  1. 
(28) 

Therefore the jump discontinuity at the Fermi surface is obliterated for sufficiently 
strong interactions-a fact known from the original work of Luttinger, Mattis and 
Lieb. This means that the Landau Fermi liquid theory is invalid for the Tomonaga- 
Luttinger model because quasiparticles with long lifetimes can no longer be defined. 

2.5. The density of states at T = 0 

The density of states can be obtained from the retarded Green function using the 
following formula (Suzumura 1980): 

D ( w )  = -2 d t  cos(wt) Im gRI(x ,  t )  ( U  > 0). (29) I x=o 

From the expression for Ce,(x, t )  

(eRl(x, t )  = i o (  t) .rr-'  exp(iprx) Im{(x - gt + ia )-I[ (x/  a I 2  + (1 + igt/ a )7-'}. 
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Therefore 

~ ( w )  = -2 r - l  JOE d t  cos(wt) ~m[(-gt+icu)-'(l + i g t / a ) - ~ l  

= (wcr /g )2y /g r (2y+  I )  exp(-oa/g).  (30) 

Due to the fact that we have chosen the same cutoff in Go and Q, we are able to obtain 
a closed expression for D ( w ) ,  which agrees with the low-frequency asymptote of 
Suzumura. It is easily seen that the sum rule quoted by Suzumura is satisfied by our 
result, i.e. a j: dw[D(w) - Do(w)J  = 0, where Do(@) is the non-interacting density of 
states. 

3. Generalisation to spin-$ fermions 

3.1. Introduction 

The generalisation to spin-3 fermions is straightforward. One simply includes spinor 
indices s = 1, 2 in the electron fields. For H,, we now have 

and 

where we have used the notation due to S6lyom and g are the bilocal functions of 
positions in general. 

3.2. The partition function 

As before, we introduce charge and spin density fields to decouple the four-fermion 
interaction term: 

With these transformations, Hi becomes 

where 
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Observe that the previous calculations for the spinless problem can be carried over 
for this case. Using the identities involving delta functionals and integrating out the 
electron fields and the auxiliary fields we obtain the partition function in terms of the 
spin and charge densities: 

where 

and 
I 

I 

(4A,)-’ + o1 

I (4AJ-I + 6, 
The block diagonal form of K shows that the spin fields and density fields do not 
interact with each other. This arises from the neglect of the back-scattering terms and 
results in undamped spin and charge density fluctuations. The expression for the free 
energy can be written down immediately since each block in K corresponds to the 
spinless problem: 

/ 20 = e XP ( - 1 n [ s in h ( P &p ( P ) / 2 1 / si nh ( P I P I / 2 1 [si nh ( PE, ( P / 2 / si nh ( P I P I / 2 1) 
and 

F ( T )  = Fo(T)+ c [ E P ( P ) +  %(P) -2Pl 
P > O  

+ c 2Tln{rl-exP(-&p(P)/T)l[1 -exP(-.u(P)/T)l 
P > O  

are dispersion relations for spin and density excitations, describing doubly degenerate 
propagating modes. Again, for local interactions, up to a vacuum renormalisation 
energy, the free energy is quadratic in T for low T The spin and charge fluctuations 
are equally important in contributing to the free energy. 
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3.3. The single-particle Green function at T = 0 

The single-particle Green' function was first calculated by Dzyaloshinsky and Larkin 
(1973), where the authors employed Ward identities in a diagrammatic analysis. The 
Green function was later calculated by Suzumura (1980) using the operator identities 
of Luther and Peschel. Since the spin-f case can be split into two decoupled spinless 
problems, the procedure used from 0 2.3 can be trivally adapted. Thus, the analogous 
expression for Q is now Q, + Q,, with Qp(x, 7) given by 

-,r C p - l  e-*'P"[l- cos(px - w7)][(p + iw)/(p2+ w 2 )  - ( f p p  + i w ) / (  u',p2 + U*)] 

where f ,  = 1 + vl/rr,  U', = f', - ( v ~ / T ) ~  and Q, is obtained from Q, by replacing p by 
(+ and v by S .  The expression analogous to (A1.2) is Q(x, t > 0) = Q, + Q, where 

Q, = + In{ [(x - upt + ia ) (x + u,t - i a  )/ a 2 ] y p  

P W  

x ( x -  u , t+ia) / (x-  t i i a ) }  with 7, = [ u P / u , )  - 1114 

and similarly for Q,, replacing p by U. 

O( t ){( x - upt + ia I - "~ (x  - u,t + ia 

Thus, Gl,(x, t )  = ( 2 ~ ) - '  exp(ipfx) W(x, t ) ,  where W(x, t )  is given by 

(x  - u,t + ia ) (x  + U,? - i a  )/ a 2 ] - y p  

x [ ( ~ - u ~ t + i a ) ( ~ + ~ , t - i a ) / ~ ~ ] ~ ~ ~ } + ~ ( - t ) { ~ ~ } .  (36) 

3.4. Momentum distribution at T = 0 

We follow the steps taken in 0 2.4. We can immediately write down the momentum 
distribution of the branch-1 electrons: 

a3 

. n l , ( p )  = (2,ri)-' dx elax(Pf-P)(x--' 1) -(Y,+rp+')(X+i)-(y,+y p : (37) 

We find that, in the vicinity of pf, 

where 

n , s ( p r )  = U% + r p  +f)/[2J;;r(rU, + r p  + 1)l. (38) 

The above agrees with the results of Gutfreund and Schick (1968). 

3.5. The density of states at T = 0 

Ds(w)  = - (2/7~)  d t  cos(wt) Im n ( - u b t + i a ) - 1 ' 2 ( 1 + i u b t / a ) - 2 y h  . (39) I: ( b = p . u  ) 
The explicit expression in this case is not known, since, from the Green function, 

the velocities of the two single-particle excitations are not equal to each other. However, 
its asymptotic form at Iwa/<< 1 can be determined easily. We rescale the integrand 
such that cos(wt) is independent of U. The leading term is then obtained by taking 
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the zero limit of wa. Thus 

D,(w) = (2/7roa) d t  cos t Im n (1+iubt/wa)-2yh-1/2 loW ( b = p , u  

- (2 /7 rwa)  d t  cos t Im n (iubt/wa)-2Yh-”2 
b = p , w  

P sin 2 d Y p  + ru) = ( wa ) 2YP+2  Y ,  -2Y,  - 1 / 2  -2 Y, - I / 2 

( 
U, 

I:’ 
x r ( - 2 Y p  --2Y,)/.ir for 2 ( Y p  + 16) < 1. 

This agrees with the result of Suzumura (1980). 

4. Conclusion 

We have exploited the equivalence between a many-body problem in one spatial 
dimension and  a (1 + 1)-dimensional field theory. The method of functional integration, 
which proves so powerful in the latter, is used to solve the Tomonaga-Luttinger model 
without large momentum transfer. We have checked our results for local interactions 
with previous work. For a long-range Coulomb interaction, the elementary excitations 
are found to be massive-a situation similar to the dynamic mass generation in ( Q E D ) ~ .  

The advantage of our procedure lies in the introduction of auxiliary fields 4 when the 
transformation to the density representation is performed. On integrating out these 
auxiliary fields, the original problem is bosonised in terms of the physical fluctuations 
of the system. On the other hand, one may integrate out the density fields instead, 
obtaining the effective action h[4]. The derivation of the Green function is then 
straightforward. Other n-point functions of the system can be calculated similarly. It 
is pleasing to see that the method of functional integration provides a clear and  
streamlined alternative to the conventional operator methods. 

The next step in the development of our procedure is the inclusion of back scattering. 
The model is then equivalent to the massive Thirring model, the bosonisation of which 
has been carried out in the functional framework (see § 1). This leads to a sine-Gordon 
Hamiltonian (Heidenreich et a1 1975) whose solution requires a renormalisation group 
analysis. We would like to point out that the kinetic energy in the Kondo-Anderson 
models can also be linearised. Perhaps the method proposed here might provide an  
alternative to the daunting methodology of the Bethe ansatz. At present, we are seeking 
to generalise the process of linearisation to higher dimensions. Envisaging possible 
relevance to the study of high-temperature superconductivity, Mattis ( 1987) has recently 
applied the bosonisation technique to the half-filled two-dimensional free-electron 
band with a square Fermi surface. However, apart from the obvious consequences of 
the nested Fermi surface, the instabilities of such a system remain to be investigated. 
We also hope to ascertain whether the smearing of the Fermi surface at zero temperature 
is a phenomenon with strong dimensional dependence or  a pathology of the linear 
approximation to the free-fermion spectrum. 
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Appendix 1. Calculation of Q(x, t )  

In the imaginary-time formalism, it was found that Q(x, 7) is given by 

dw[ 1 -cos( p x  - UT)] 

x [ ( ~ p  +io) / (g2p2+w2)  - ( p  + i w ) / ( p 2 + w 2 ) I .  

P c€ 

dp(2.rrp)--' e-aip! L L 
(Al.l)  

We calculate the contribution from the first term in the second pair of square brackets, 
and then obtain the second term by setting f = g = 1.  Consider first the o integration: 

00 [ dw/(4.rr){2-exp[i(px-w.r)] -exp[-i(px -p~)]}(fp+io) / (g2p '+w2) 
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Note that changing the sign of t is equivalent to a complex conjugation: Q(x, t < 0) = 
Q(x, i t l ) * .  It suffices to consider t > 0. After some rearrangement, Q(x, t )  becomes 

loE dpp- '  exp(-.p)UexpCip(x - t)l -exp[ip(x -@)I 

+ - exp[ip(x - gt) i  - exp[ip(x + g t ) i ~ n  

where y = 2(f /g  - 1). 

~ ( x ,  t )  = In{[(x - g t + i a ) ( x  +g t  -icy)/a']'(x - g t + i a ) / ( x  - t +icy)> 

where the integration constant is chosen such that Q ( x  = 0, t = 0 )  = 0. 

a,Q(x, t )  is integrated to give 

(Al.2) 

Appendix 2. Momentum distribution 

Let q = I ( p - pf)a 1 and consider first p > pf. 

n , ( q )  = (27ri)-' I-, d x  exp(-iqx)(x-i)-'-'(x+i)-' 
m 

= (27r)-'[T(y+ l)T(y)]- '  lox d a  lox d b  aY-lbY 

x exp[-(a + b)] 1 dx exp[i(a - b - q)x]  
m 

--a) 

where we have used the identity 

(A * iB)-" = ( ~ i ) " [ T ( a ) ] - '  dx exp[ix(*A+iB)]x"-'  

(A2.1) 

to arrive at the last equation. The x integration gives 2 d ( a  - b - 4). Since b + q > 0 
for the range of integration, we have 

n , (p>pf)  = q2' e - 4 q ( y +  1 , 2 y +  1; 2 q m y )  (A2.2) 

where 
13 

q ( a ,  p ;  Z )  = ( l / T ( a ) )  lo d t  e-"t"-'(t+ l)p--"-'  (Re cy > 0). 

For p < pf, we obtain similarly 

n , ( p < p , ) =  q2' e - q [ [ r ( y + l ) ] - ' ~ ( y + l , 2 y + l ;  2 q ) .  (A2.3) 

Combining (A2.2) and (A2.3) gives the desired result, equation (27). 
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